On the angular effect of residual clouds and aerosols in clearsky infrared window radiance observations 2. Satellite experimental analyses
نویسندگان
چکیده
[1] This paper continues an investigation into the zenith angular effect of cloud-contamination within “clear-sky” infrared (IR) radiance observations commonly used in the retrieval of environmental data records (EDRs), which include “cloud-cleared radiances” (as is typical from hyper/ultra spectral IR sounders), as well as “cloud-masked” data (as is typical from imagers). The simple probability of clear line of sight (PCLoS) models and sensitivity studies of Part 1 (Nalli et al., 2012a) are corroborated with experimental analyses of environmental satellite data products as functions of sensor zenith angle, including sounder cloud-cleared radiances (CCRs) and retrieved effective cloud fraction, as well as narrowband imager cloud masking. Analyses of hyperspectral microwindow calc obs are performed using MetOp-A Infrared Atmospheric Sounding Interferometer (IASI) CCR observations matched to dedicated radiosonde observations (RAOBs) during intensive validation field campaigns. The IASI calc obs are found to exhibit a systematic positive bias with a strong concave-up variation with satellite zenith angle (i.e., an increasing positive bias symmetric over the scanning range) on the order of 1–3 K in magnitude, a signal associated with both residual clouds and dust aerosols. This is corroborated by analysis of the IASI retrieved effective cloud fraction product compared to the expected angular variations predicted by the PCLoS models, which show that the observed concave-up calc obs variation may be the result of contamination by mid-to-upper tropospheric clouds. Finally, a corollary global analysis of the MetOp-A Advanced Very High Resolution Radiometer (AVHRR) cloud-mask shows concave-up variation that may be underestimating the angular variation for global ensembles containing clouds with vertical development (i.e., aspect ratios>0.5). The results presented in this work thus support the sensitivity studies of Part 1, indicating that contamination by residual clouds and/or aerosols within clear-sky observations can have a measurable concave-up impact on the angular agreement of observations with calculations.
منابع مشابه
On the angular effect of residual clouds and aerosols in clear-sky infrared window radiance observations: Sensitivity analyses
[1] Accurate environmental satellite observations and calculations of top-of-atmosphere infrared (IR) spectral radiances are required for the accurate retrieval of environmental data records (EDRs), including atmospheric vertical temperature and moisture profiles. For this reason it is important that systematic differences between observations and calculations under well-characterized condition...
متن کاملDevelopment of empirical angular distribution models for smoke aerosols: Methods
[1] Using broadband shortwave radiance measurements from the Clouds and Earth Radiant Energy System (CERES) sensors onboard the Terra and Aqua satellites, empirical angular distribution models (EADM) are constructed for smoke aerosols. These EADMs are constructed for smoke aerosols emitted during the biomass burning season (August‐October), in South America. All available years (2000–2008) of b...
متن کاملRadiative impacts from biomass burning in the presence of clouds during boreal spring in southeast Asia
[1] The impact of smoke aerosols generated from biomass burning activities in Southeast Asia on the total (i.e., direct and indirect effects) reflected solar and emitted thermal radiation from clouds was investigated using satellite data. We combine narrowband radiance measurements, from ultraviolet to near-infrared wavelengths (e.g., SeaWiFS and TOMS), with broadband irradiance measurements (e...
متن کاملAerosol Influence on Cloud Microphysics Examined by Satellite Measurements and Chemical Transport Modeling
Anthropogenic aerosols are hypothesized to decrease cloud drop radius and increase cloud droplet number concentration enhancing cloud optical depth and albedo. Here results have been used from a chemical transport model driven by the output of a numerical weather prediction model to identify an incursion of sulfate-laden air from the European continent over the mid–North Atlantic under the infl...
متن کاملSystematic variations of cloud top temperature and precipitation rate with aerosols over the global tropics
Aerosols may modify cloud properties and precipitation via a variety of mechanisms with varying and contradicting consequences. Using a large ensemble of satellite data acquired by the Moderate Resolution Imaging Spectroradiometer onboard the Earth Observing System’s Aqua platform, the CloudSat cloud profiling radar and the CloudAerosol Lidar and Infrared Pathfinder Satellite Observations (CALI...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013